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Measurements of the wave-number/phase velocity 
spectrum of wall pressure beneath a 

turbulent boundary layer 
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Aerodynamics Division, National Physical Laboratory, Tcddington 

(Received 22 October 1968 and in revised form 27 July 1970) 

Measurements are presented of the wave-number/frequency and wave-number/ 
phase velocity spectrum of wall pressure for a two-dimensional turbulent 
boundary layer in zero pressure gradient, obtained from a Fourier transform of 
experimental filtered spatial correlations. This method allows the results to be 
corrected for acoustic disturbances in the wind tunnel, and for finite transducer 
size. An empirical form for the pressure field is proposed, based on the measure- 
ments, and is used to predict a frequency spectrum correction for transducer size 
which agrees well with measured values. 

1. Introduction 
The problem of the fluctuating pressure field on the wall beneath a turbulent 

boundary layer or a pipe flow has excited considerable interest since the advent of 
pressure transducers small and sensitive enough to give detailed measurements in 
low speed flows. The interest arises mainly because the pressure field may produce 
vibrations of the wall, possibly resulting in the generation or transmission of noise 
in the case of an aircraft, or even causing fatigue of the metal. The study of the 
pressure field is also important in its own right for the information it can yield on 
the structure of the turbulence in the boundary layer. 

Because the mean shear and turbulence intensity within the boundary layer 
are high, the analysis carried out by Lin (1952) leads us to expect that Taylor’s 
hypothesis will not hold for the pressure fluctuations on the wall, i.e. there is no 
single velocity a t  which all the elementary pressure disturbances travel. For this 
reason, most investigators (cf. Bull & Willis 1961; Corcos 1962; Willmarth & 
Wooldridge 1962) have measured the longitudinal space-time correlation of the 
pressure fluctuation, 

BP&, 7) = PI:, t )  . P ( X  + 5, t + 4, 
using the techniques developed originally by Favre, Gaviglio & Dumas (1957) for 
the correlations of velocity fluctuations in turbulent flows. These data have been 
used to calculate effective convection velocities for the turbulent motion, and to 
estimate average life-times of eddies of various scales. For example, Willmarth 
& Wooldridge (1962) presented their data as a contour plot of the correlation as 
a function of space and time separation, as in figure 1. The convection velocity was 
defined as the slope of a line through the peaks of the contours, shown as a dotted 
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line in figure 1. In the experiment of Willmarth & Wooldridge, this line was 
found to be curved, so that the convection velocity obtained was a function of the 
space or time separation between the transducers, varying from 0.56 U, for zero 
separation to 0.83 U, for large separation. 
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FIGURE 1. Diagrarnmatic representation of the 

Willmarth & Wooldridge. 
T) contours of 

For the near-homogeneous flow investigated by Willrnarth & Wooldridge, this 
variation in convection velocity must be attributed to the fact that, for small 
separations, the correlation is dominated by the small-scale eddies close to the 
wall, travelling relatively slowly, while for large separations t,hese eddies will 
have decayed, leaving the faster-moving large-scale eddies to determine the 
convection velocity. 

For some applications of the results, it  is desirable to have a more definite 
relation between convection velocity and eddy size, and Willmarth & Wooldridge 
attempted to obtain this relation by measuring the convect'ion velocity in two 
filtered bands of low and high frequency. However, for a situation where the 
effective convection velocity varies with wave-number, frequency filtering is not 
equivalent to isolating a particular wave-number, so that Willmarth & W-001- 
dridge again found a convection velocity that increased with increasing trans- 
ducer separation. Similar results have been found by Favre, Gaviglio & F o b  
(1964) for velocity Auctuations in a boundary layer, using filters of muchnarrower 
bandwidth (Willmarth & Wooldridge attributed the variation of their filtered 
convection velocity with separation to an insufficiently narrow bandwidth). 

The difficulty arises because a frequency filter cannot distinguish between 
eddies of large wavelength moving quickly and eddies of small wavelength 
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moving slowly. The turbulent pressure field can be considered as a distribution of 
energy over a range of wave-numbers, each wave-number having a distribution 
of phase velocities c = w/k, ,  and a frequency filter picks out those parts of the 
field for which the product of wave-number and phase velocity is a constant. In  an 
earlier paper (Wills 1964), the author outlined an alternative approach to the 
presentation of data on turbulent fluctuations, involving the measurement of 
the complete wave-number/phase velocity spectrum. An experimental method 
was described which had several advantages, particularly for the measurement 
of pressure in the presence of the spurious sound fields found in wind tunnels, and 
this method has been used here for the measurement of the (kl, c) spectrum of 
wall pressure in a two-dimensional turbulent boundary layer in zero pressure 
gradient. 

2. Theoretical discussion 
The simplest quantity providing information on the convection of the wall 

pressure fluctuations in a homogeneous, stationary flow is the longitudinal 
space-time covariance 

(2.1) R,,(5, 7) =-P(x> 4 .P(% + t, t + 4, 
and various definitions of convection velocity, in addition to that adopted by 
Willmarth & Wooldridge (1962), have been based on properties of R,,([,r) 
(see Wills 1964). We can instead study the properties of the double Fourier 
transform of R,,(t, 7) with respect to space and time, 

and use this function to define the wave-number/phase velocity spectrum, 

JfPP(kl> c) = & A ~ l >  0)) (2.3) 

where the phase velocity c is given by c = - w/k,.  The function M,,(k,, c) contains 
the whole of the information in the complete R,,([, r )  correlation in a form which 
is particularly applicable to convected flows, as it shows the distribution of 
energy over the range of phase velocities for each wave-number, as well as giving 
the peak energy velocity for each wave-number, U,(kl), defined by 

{aMp,(kl, C)/ac}c=U,(kl) = O .  (2.4) 

The function M,,(k,,c) can most conveniently be obtained from the space 
correlation of signals filtered with narrow-band filters at  frequency w ,  S,,(t, w ) ,  by 
a single Fourier transformation 

since S,,([, w )  is effectively the Fourier transform with respect to r of the space- 
time correlation B,,($, r )  

fl,,(~, w )  = (2n)-1 R,,(t, r).eio7dr. (2.6) 
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As Bp,(& 7) is not in general an even function of r (except for ( = O ) ,  AS',,(& w )  
may be complex, having real and imaginary parts, say S,,(& w ) ~  and S,,((, o ) ~ .  
In the practical case these correspond to the simultaneous filtered correlation 
and that measured with a time delay of 7r/2w, or a phase shift of 3.r at frequency w ,  
in one of the signal channels. 

Then since R,,(c, 7) = BPp( -[, - T ) ,  Spp(& w )  and Sp,(c, w ) ~  will be even and 
odd respectively, so that 

(2.7) 

i.e. the downstream-travelling energy is the sum of the transforms of the real and 
imaginary parts of the filtered correlation while the upstream-travelling energy 
is their difference. From this it can be seen that, if all the energy is known to be 
travelling in one direction, the contributions from the transforms of Sp,((, w ) ~  
and of S,,(& are identical, with a sign change if the energy is travelling up- 
stream. In that case it would be sufficient to measure only S , , ( ~ , W ) ~ .  At the other 
extreme, a standing-wave pattern (if that were dynamically possible), hatving 
equal energy at  positive andnegative velocities, would have S,,([, w ) ~  = 0. In an 
attached boundary layer the instantaneous velocity appears to be always 
positive, so that all the convection will be in the downstream direction. However, 
there may still be a contribution from acoustic waves that may travel in any 
direction (see $ 5 ) )  so that the complete spectrum is still required. 

In this experiment, the M,,(k, c) spectrum has been measured in the longi- 
tudinal and lateral directions. (In the latter case, ( in the above relations is to  be 
replaced by c.) 

3. Experimental equipment 
The experiments were carried out in the NPL boundary-layer tunnel (described 

fully by Bradshaw & Hellens (1964)). The tunnel working section is 59 in. (1.5 m) 
wide by a nominal 9 in. (23 cm) high, the roof being adjustable to set the desired 
longitudinal pressure gradient. For these experiments, the roof was set to give 
zero pressure gradient at  a free-stream velocity of 125 ft./sec (38 mlsec). The floor 
is of cast aluminium plates spanning the tunnel, with 3.5 in. (8-9 cm) diameter 
instrumentation disks set flush with the floor and spaced at  6 in. (15.2 cm) pitch 
along the tunnel centre-line. The upstream transducer was approximately 84 in. 
(2.13 m) from the leading edge of the floor plate, at  a point where the boundary- 
layer thickness &,,, was 1.3 in. (3.3 cm). The velocity profile a t  this point is shown 
in figure 2. 

Two types of transducer were used; one the conventional lead zirconate 
titanate piezo-electric type, the other developed specifically for small-separation 
correlation measurements from the orifice-hot-wire probe of Kovasznay & 
Remenyik (1962). The crystal transducers were 0.125 in. (0.32 cm) diameter, 
mounted flush with the surface and close to the edge of an ' Araldite ' disk which 
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could be rotated to vary the separation between two such transducers. The disks 
were backed by heavy brass bodies resiliently mounted in the transducer casings 
to isolate the transducers from mechanical vibration of the tunnel floor. By 
using the transducers in different holes in the tunnel floor, the separation between 
the two measuring points could be varied continuously from 3.25 in. (8.25 cm) to 
27 in. (69 cm) in the downstream direction, and from 3.25 in. (8.25 cm) to 15 in. 
(38 em) in the lateral direction. The transducers were connected by short, low- 
noise coaxial cables to cathode followers with an input impedance of 1 0 0 M 0 ,  
giving a low-frequency cut-off at about 25 Hz. 

ft./sec m/sec 
i40 

120 

Ll 100 

20 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9' 1.0 1.1 1.2 1.3 1.4 1.5 
y, in. 

FIGURE 2. Boundary-layer velocity profile. 

For all the correlations a t  small separations, an orifice-hot-wire probe pair was 
used. Figure 3 shows a sketch of the instrument, taken from Wills ( 1 9 6 8 ~ ) .  The 
transducer diameter was 0.036 in. (0.92 mm), and covered the separation range 
0.1-2.9 in. (0.25-7-4 cm). The hot wires were operated by Disa constant tempera- 
ture anemometers. 

The cathode follower or Disa anemometer output signals were amplified by 
Tektronix 122 low-noise pre-amplifiers and filtered by identical Briiel and 
Kjaer 21 12 audio-frequency spectrometers on the +-octave bandwidth setting, 
before correlationby a time-divisionmultiplier (Johnson 1962). The instantaneous 
product signal was integrated for a fixed time to yield the covariance signal. A t  
higher frequencies, where there was some doubt that a +octave filter was s u s -  
ciently narrow, a constant 200 Hz pass band was used. For the s,,([, w ) ~  measure- 
ments, the output of one of the Tektronix pre-amplifiers fed a phase-shifter/ 
differentiator network, giving a phase shift of 90" i 1' over the filter pass band at  
each of the chosen frequencies. The output of the phase shifter fed the Briiel and 
Kjaer spectrometer as before. 
X,,([, w )  was measured at  filter centre frequencies of 200, 400, 800, 1600 and 

3150Hz in the longitudinal direction, and X,,([,w), was also measured at 
l00Hz for comparison, although the range of separation required ( > 30in.) 
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means that the flow is no longer homogeneous. In the lateral direction, S,,(C, w )  
was measured a t  frequencies of 200, 400, 800, 1600 and 3150Hz (X,,(~,w), is 
identically zero). 

Pressure holes Contra-rotating disks 
0.036 in. dia. flush with surface 

FIGURE 3. Orifice-hot-wire probe traversing gear. 

4. Presentation of results 
The longitndiiial correlations # , , ( [ , w ) ~ ,  normalized to unity at  6 = 0, are 

shown in figures 4(a ) - (b )  and A',,([, w ) ~  in figure 5. The curves show the typical 
damped cosine and sine wave forms respectively, similar to those obtained by 
Harrison ( 1  958) in a turbulent boundary-layer flow. In  addition, the results a t  
the lower frequencies, 100, 200 and 400 Hz, exhibit an appreciably non-zero 
correlation area, whereas the curves a t  higher frequency integrate more or less 
to zero. This non-zero area is thought to be due to extraneous sound in the wind 
tunnel, and will be discussed in 55. Similar results were found in the experiments 
of Willmarth & Wooldridge (1962), and forced the authors to  exclude the low 
frequencies from tlheir correlation measurements. 
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FIGURE 4. Longitudinal filtered spatial correlation. (a) A, f = 100 Hz;  X , f = 200 
o,f = 400Hz. (b) +,f  = 800Hz; n,f = 160OHz; O,f = 3150Hz- 
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FIGURE 4. Longitudinal filtered spatial correlation. (a) A, f = 100 Hz;  X , f = 200 
o,f = 400Hz. (b) +,f  = 800Hz; n,f = 160OHz; O,f = 3150Hz- 
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The results for the filtered correlations with lateral separation are shown in 
figure 6. Here again there is evidence of extraneous sound at 200 and 400Hz, 
where the correlations tend to a non-zero limit at  large separations. 

L 
FIGURE 5 .  Longitudinal imaginary filtered spatial correlation. X , f = 200 Hz ; 

o, f  = 400Hz;  + , f  = 800Hz;  a,f = 1600Hz;  0,f = 3150Hz. 

c, in. 

FIGURE 6. Lateral filtered spatial correlations. x , 200 H z ;  0, 400 Hz;  
+, 800 Hz; 0, 1600 Hz. 
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5. Extraneous sound 
In the experiments of Willmarth & Wooldridge (1962), in the present experi- 

ment (figure 8) and in many other low-speed wind tunnel experiments, the 
frequency spectrum of the wall pressure rises sharply a t  low frequencies. As the 
precise shape of the low-frequency spectrum varies in different experiments, it 
seems likely that the low-frequency rise is due to the conditions of the experiment 
and not to the boundary layer itself. 

Willmarth & Wooldridge filtered out frequencies below 105 CIS (wS*/U, = 0.14), 
the point at  which the low-frequency rise began, from their measurements of 
R,,(t, 7). The results that they obtained showed, in addition to the peaks corre- 
sponding to the downstream-convected turbulence, small peaks corresponding to 
a disturbance travelling upstream a t  about the speed of sound. When the high- 
pass filter cut-off frequency was increased to 300 CIS (wS*/U, = 0.41), these small 
peaks disappeared. 

It thus appears that a t  least part of the low-frequency pressure fluctuation 
arises from sound waves in the working section, and a similar result has been 
found in the present experiment, Consider the lateral correlation at 200 Hz; it falls 
to a constant value of 0.25 at large separations, suggesting a plane wave corre- 
lated right across the tunnel. Kraichnan (1956) has shown that 

h 

fl,,(k, W)k+" = 0- (5.1) 

Thus the area under the S,,(t, 6, w )  curves should be zero in incompressible 
flow. For 5 = 0, the results of figure 6 show that A',,(<, w )  3 0 for all 6, even with the 
asymptotic low-frequency correlations subtracted, so that to satisfy condition 
(5 .1)  it seems likely that 

J m  S P P ( h J )  d t  
-a 

will be small in incompressible flow. The contribution from the turbulence/mean 
shear term alone is identically zero (see Lilley & Hodgson 1960). 

The fact that, for instance, the S,,(f[, w ) ~  curve at 200 c/s, figure 4 ( a ) ,  and the 
corresponding X,,(c, w ) ~  curve, figure 5 ,  have a positive correlation area taken 
over a large separation range is thus taken to imply the presence of acoustic waves 
in the wind tunnel. (This is not to suggest that the correlation area taken over 
sufficiently large separation will not be zero, but merely that the correlation 
contains a large-scale component whose wavelength is comparable with the 
correlation length of the boundary-layer turbulence.) Inspection of figure 5 
indicates that the waves are travelling upstream, since the large-scale correlation 
is of opposite sign to that of the downstream-travelling turbulence correlation. 
Thus if we assume acoustic waves correlated across the working section, and 
travelling upstream a t  a speed (a, - U,), with a mean square intensity of 0.25 of 
the total correlation a t  200 Hz, given by the asymptotic correlation in figure 6, we 
can subtract the acoustic contribution from the turbulence contribution. This 
has been done in figure 7 for the Spp((, w ) ~  and S,,([, w ) ~  curves at  200 Hz, and i t  
can be seen that the residual area under the curves is quite small. Similar good 
agreement is obtained at  400 Hz, for an acoustic contribution of 0.1 to the mean 
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FIGURE 7. Longitudinal correlationsf = 200 Hz. 

FIGURE 8. Frequency spectrum of boundary -layer wall pressure. 
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square pressure, while for the SP&, w ) ~  correlation at 100 Hz, figure 4 (a) 
suggests an acoustic contribution of 0.5. No results are available at lower fre- 
quencies, because of the prohibitively large separation distances involved, but 
from the rate at  which the acoustic contribution increases with decreasing 
frequency one might guess that nearly the whole of the contribution below 100 Hz 
is acoustic. Figure 8 shows the pressure frequency spectrum measured with the 
0.125in. transducer, normalized with respect to frequency w ,  together with the 
correction for the acoustic contribution. The peaks a t  80 and 160 Hz correspond 
to the fan fist and second harmonics, but the remainder of the acoustic contribu- 
tion appears to be wide-band in nature. Since it is propagating upstream, the 
most likely source appears to be unsteadiness in the flow in the first diffuser. This 
suspicion has been confirmed by some later measurements made in a simple 
blower tunnel with and without a straight rectangular diffuser with an equivalent 
conical total angle of 5" (Wills 1968b). The spectral density a t  low frequencies 
was reduced by a factor approaching 100 when the diffuser was removed. 

The advantage of the M,,(k,,c) spectrum approach is that the acoustic 
contribution can readily be isolated even at low frequencies, whereas with the 
Rpp(t,7) approach, it is necessary to discard the whole of the low-frequency 
contribution, as previous workers have done. In  this case, it is difficult to estimate 
the effect of removing the low frequencies on the overall space-time correlation. 
Using the (kl, c) approach, neglect of the low (or high) frequencies results only in 
a lack of data in limited regions. 

6. Other corrections 
In  a similar way, the (kl, C )  approach allows corrections to be made for finite 

filter bandwidth and transducer size. The effect of using a filter of finite band- 
width with uniform response over the band amounts to averaging the energy over 
the filter bandwidth a t  constant wave-number, i.e. that 

where w1 and w2 are the limits of the filter bandwidth. Similarly, for a non-uniform 
filter response, the measured spectrum will be the integral of the product of the 
true spectrum a t  constant wave-number and the filter response. 

It is also possible to allow for the effect of finite transducer size on the measure- 
ments. The pressure transducer will average the instantaneous pressure over its 
surface area, and thus gives a reduced output at high wave-numbers. Por the 
case of a transducer having an output signal linear with pressure, the analysis of 
Uberoi & Kovasznay (1953) shows that the wave-number response S(k) of the 
transducer (analogous to the frequency response of a time-dependent instrument) 
is given by the Fourier transform of the convolution of the spatial response of the 
transducer K(s)  with K (  -s), i.e. 

S(k) = [[eik..K( -s)K(r - s)dsdr.  
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For a circular pressure transducer S(k) reduces to the square of the Hankel 
transform 

/om Jo(kr)rK(r)  dr 

of the spatial sensitivity function K ( r ) ,  where k = I kl arid r is the radial distance, 
and for a transducer having constant response inside the circle and zero outside, 
the mean square wave-number response becomes 

where a is the transducer radius and J, is the Bessel function of the first order 
(figure 18). The measured (k, c) field, M,(k, c), is then given by 

M,,(k, c) = S(k)"k, c). (6.4) 

The corrections to be applied to experimental results will be discussed in 8 7 in the 
light of the measurements obtained here. 

7. Discussion of results 
The Fourier transforms of the longitudinal and lateral correlation curves were 

evaluated numerically on the NPLKDF 9 digital computer, using a 101-point 
linear interpolation method. Figure 9 shows the transform of the 200 Hz longi- 
tudinal correlation, where the acoustic component shown in figure 7 has been 
subtracted from the correlations. The curves are the sum and difference of the 
transforms of XI),(<, w ) ~  and S,,(<, o ) ~ ,  representing the energy travelling with 
positive and negative velocities rypectively, and the values of g,, are normalized 
with respect to k and w ,  i.e. / sSpp(k l ,  w ) d k ,  dw = 1. The fact that there is an 
apparent secondary peak in the negative velocity direction at k, 6 = 1, with an 
amplitude of 0.2 of the main peak, is not thought to be significant, and is probably 
due to phase differences between the two filter responses. The apparent secondary 
peak was much smaller at  higher frequencies where the filters were known to be 
better matched. In an acoustic field, the negative-velocity components could be 
attributed to a standing-wave pattern, but since there is no mechanism by which 
the turbulent flow can support upstream-travelling waves at  the observed 
velocity, this explanation must be rejected in this case. Any true negative- 
velocity energy would be found only a t  low negative velocities (large k,) and 
would be expected to decrease in intensity with decreasing k,. The inaccuracy of 
the numerical transforms at large k, makes it difficult to study this region, but no 
evidence was found of upstream-travelling energy apart from the low-frequency 
acoustic waves. Accordingly, no attempt has been made to incorporate the 
apparent negative-velocity components into the complete (k,, w )  plots. 

Figure 10 shows a contour plot of the (k,, w )  spectrum, representing the sum of 
the transforms of S,,(<, w ) ~  and S,,([, o ) ~ .  The results at  low k, and low w here 
have been excluded from this plot, partly because they represent a sound field, 
but mainly because the computed k, spectra are inaccurate at  low values of k, 
because of the need to truncate the filtered space-correlations at  large separations. 
The working section length is only two wavelengths of sound at  200 Hz. 
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The strong convection of the fluctuations, shown by the concentration of 
energy into a diagonal band in figure 10, is shown more clearly in figure 11, a 
contour plot of M,,(k,, c) .  The convection velocity U,(k,) defined by equation 
(2.4) as the peak-energyvelocity a t  constant k,, isshownbythedottedline through 
the peaks of the contours. U,(k,) is seen to vary from a maximum value of about 
0.9 U, at a value of k, a,,, equal to 1.2, to an asymptotic value of 0-55 Urn a t  high k,. 

0.1 1 .o 10 

k, &I,, 

-, A(k1 ,  0); - - - - 9  A@, -0). 
FIGURE 9. Measured longitudinal wave-number spectrum at f = 200 Hz. 

This variation of U,(k,) demonstrates the fact that the largest eddies extend over 
the whole width of the boundary layer and are convected with speeds typical of 
the outer layer, while those small-scale eddies contributing to the wall pressure 
are situated close to the wall and are therefore convected with lower velocities. 

This high-wave-number convection velocity falls well below that, for example, 
of Willmarth & Wooldridge (1 962). The reason is that the usual definition of 
convection velocity is weighted towards that of the most energetic wave-numbers. 
What is a t  first sight surprising is the comparatively low wave-number 

(kl4l95 = 20) 

a t  which the asymptotic value is attained, i.e. when the wavelength is less than 
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one quarter the boundary-layer thickness. It is interesting to note that the wave 
guide models of Landau (1967) and others (Sharma 1968) also predict phase 
velocities that are consistently lower than the conventional convection velocity 
in this range of wave-numbers. Figure 12 shows a comparison between the values 
of U,(k,) obtained here and the predicted phase velocity of the least damped wave 
in Landahl's model. The agreement is excellent a t  higher wave-numbers, but at  

10,000 

,1000 

loo I I I I 1 1 1 1  I I I I I I l l  
0.01 0.1 1.0 

k,, cm-I 

FIGURE 10. Contour plot of Suu(kl ,  (9). 
A 

low wave-numbers U,(k,) rises above the predicted values. This may reflect the 
fact that the large-scale energetic motion cannot be regarded as a perturbation on 
a mean profile. Figure 12 also shows a comparison of theoretical and experimental 
decay coefficients. Experimental values are difficult to define because the experi- 
mental curves do not exhibit exactly the logarithmic decay of amplitude pre- 
dicted by the theory. The experimental values represent an approximate fit to a 
logarithmic decay and are thus rather scattered, but the agreement is still 
remarkably good.? 

At  the lowest wave-numbers, U,(k,) appears to decrease again, but the inac- 
curacy of the experimental results a t  100 Hz (figure 4 ( a ) )  make it difficult to be 
sure that this is a significant result. Bradshaw (1 967) found a similar behaviour at 

-f In a private communication, Professor Landahl has pointed out that with the more 
practical assumption of wavcs inclined at  60' to the flow, the agreement is almost perfect. 
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low wave-numbers in a boundary layer in adverse pressure gradient, although in 
that case the effect was plausibly attributed to the streamwise inhomogeneity of 
the flow. In  the present experiments, the inhomogeneity is restricted to a slight 
increase in boundary-layer thickness with distance downstream, amounting to 
only 8/30 over one turbulence wavelength at  100 Hz, an amount which must be 
too small to account for the apparent reduction of U,(k,) a t  low wave-number. If 
the reduction is real its explanation must lie elsewhere. 

Inspection of the computed transforms reveals that in the region of significant 
energy the wave-number spectra are similar at all frequencies measured, within 
experimental accuracy, so that the height of the main peak of the wave-number 
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correction 
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CPOZ 

@M,Dtk,, C)/aCfc-U,(Ld = 0. 
FIGURE 11. Contour plot of M,,(k,, c ) .  U,(k , )  given by 
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spectrum is proportional to the integrated spectral density a t  each frequency. 
Thus the complete (kl, w )  spectrum can be approximated by 

FIG 

0.16 

0.14 

0.12 

0.10 1.0 

0.8 

0.6 

b8 2 0.4 

0 1 2 3 4 5 6 7 
os*ju, 

IURE 12. Coniparison with model of Landahl (1967). Theory (Landahl): - - -, 
Re = 5000; - - -, Re = 10,000; - - - -, Re = 40,000. Experiment (Wills) : -, 
Re = 70,000, U,,,/U,; -, Re = 70,000, U,lU,. 

where @ ( w )  is the frequency spectrum, and Uw is a convection velocity varying 
with frequency, also plotted in figure 12. This result implies that the filtered space 
correlation is of the form 

Rpp r+) f 
as can be seen from figures 4 (a)-(b), and has been found by Corcos (1962) and 
others. Figure 13 shows the function F of equation (7. l ) ,  obtained from a smoothed 
curve through the results of figure 9 (although, since the transforms are similar, 
F could equally well have been taken from the transform a t  another frequency). 
The results fit a normal distribution curve 

exp [ - (wSgg,/Uw - 1)2/0.22] 



Turbulent boundary-layer wall pressure spectrum 81 

very closely except at small values of the argument. Thus the phase velocity at 
constant frequency is a nearly normal distribution with a standard deviation of 
0.14 U,. The corresponding result in. the adverse-pressure-gradient boundary 
layer of Bradshaw (1967) is 0.21 U,. These results support the intuitive idea of 
the smaller eddies being disturbed randomly from the local mean velocity by the 
large-scale eddies, the standard deviation of the disturbance being of the order 
of the local turbulence level. 
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FIGURE 13. Function P ( w / k ,  U,) of equation (7.1), w = constant. 
x ,  exp{-[w/klU,-1]2/0~22}; 0, F(kl ) .  

Figure 14 shows the Fourier transforms of the lateral correlations of figure 6, 
where the large-scale acoustic contribution at 200 and 400 c/s has been subtracted 
from the correlations before evaluating the transforms. Corcos (1962), using the 
more limited experimental data of Willmarth & Wooldridge (1962), suggested 
that the lateral filtered correlations, X,,(<, o), should h collapse on a single curve 
when plotted against wr3/U,, and this implies that Spp(k3, w ) ,  the Fourier trans- 
form of S,,(<,w), should collapse on k, UJw. However, in this experiment the 
results did not collapse on. this parameter. In particular, the wave-number 
spectrum at the higher frequencies is noticeably flatter than at low frequencies. 
Bradshaw (1967) argues the collapse of Spp(k,, o) when plotted against k, UJw 
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for the higher wave-numbers, on the basis of inner layer similarity, but such 
similarity would be centred on a value of k, 6 of about 40 in the present experi- 
ment, close to the experimental limit imposed by the finite minimum separation 
of the transducers. Thus the experiments cannot provide verification of the 
lateral scaling parameter at high frequencies where dimensional considerations 
lead us to expect that it might hold, but show that the scaling does not hold at 
the lower frequencies. A more direct check of inner-law scaling is discussed in 0 8. 
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FIGURE 14. Measured lateral wave-number spectra. x , 200 Hz ; + , 400 Hz; 
A, 800 Hz; 0, 1600 Hz; 0, 3150 Hz.  

Because the turbulence level in the boundary layer is of the order of 0-1 U,, we 
would expect the phase velocities associated with the cross-stream convection 
to be of the order of f 0.1 US, while the phase velocities associated with the down- 
stream convection are, as we have seen, of the order of U, & 0.1 U,. Thus the 
contributions from the convection of the k, components, which fall off fairly 
rapidly with increasing k,, are expected to appear only at low frequencies, so that 
the contribution to Bpp(k3,w)  a t  middle and high frequencies can mainly be 
attributed to the convection of the k, components. This property has been used 
here to convert the (k,, w )  spectrum to an approximate (k,, k,) spectrum. The 
simplest assumption that can be made is that the energy at a longitudinal wave- 
number k, is rigidly convected at  velocity U, to produce an apparent frequency 
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k, U,, i.e. that the (k,, k,) spectrum, $(k,, k,),  is given by 

9(wluc,  k3) = &,(k,> 0). 

Figure 15 shows contours of $ based on this assumption. 
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FIGURE 15. Contour plot of $(k l ,  k3) based on equation (7.2). 
$.(kl, k3) = 8&3> kl UC). 

A slightly more plausible form for the (k,, k,) spectrum is obtained by aban- 
doning the rigid-convection assumption to  relate the w and k, spectra, and 
assuming instead that the distribution of energy over k, at a given frequency w 
a t  each value of k,  is the same as that for the integral over k, given by the function 
F of figure 13. The (k,, k,) spectrum is then given by 

Contours of @(kl, k,) on this assumption are shown in figure 16. 
Equation (7.3) appears to be a plausible assumption for the (kl, k,) spectrum, 

and a method of checking its accuracy is discussed in $8. If it is an accurate 
assumption, then figure 16 shows that a t  moderate wave-numbers there is about 
twice as much energy in the downstream component as in the lateral component. 
At the highest measurable wave-numbers the distribution is tending towards the 
isotropic form. 

8. Frequency spectrum correction for transducer size 
Equation (7.3) amounts to assuming that the more general spectrum fip,(k, w )  

6-2 
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(which is also consistent with (7.1)). It is difficult to find means of checking the 
accuracy of (8.1) without measuring BPP(k, w )  or $(kl, k3) ,  either of which would 
involve a lengthy experimental programme, but some sort of check can be made 
by using (8.1) and the transducer size correction, (6.3), to predict the spectral 
density @,(w) measured with rather large transducers. 
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FIGURE 16. Contour plot o,f k3) based on equation (7.3). 
% w l '  k3) = J S,,(W k3) p (GJlk, U,)du. 

@,(w) was measured with the 0-036in. (0.91 mm) diameter orifice probe, the 
0.125in. (0.32cm) crystal transducer, and also with Briiel and Kjaer &in. and 
+in. condenser microphones. The results are shown in figure 17, and also include 
some unpublished data of Hodgson (private communication) obtained with a 
0-005 in. (0.13 mm) diameter probe microphone which should respond to the true 
wall pressure up to values of wS*/U, greater than 10. It can be seen that the 
0.036in. (0.91 mm) diameter orifice probe responds to the true pressure up to 
wS*:jU, = 3, corresponding to a frequency of 6 KHz. We may also assume (see 
figure 18) that the true wave-number spectrum is recorded for wave-numbers up 
to ka = 1, corresponding to kS,,, = 60. Since it is the loss of spatial resolution that 
leads to attenuation of the high frequencies, we may conclude that there is 
no contribution at frequencies below w6*/Um = 3 from wave-numbers above 
klS,,, = 60. Thus we may assume that the orifice probe measures the true 
spectrum Q(o) for frequencies up to wS*/Um = 3, and may use these results and 
those obtained with the larger transducers to obtain the transducer size 
corrections. Predicted values of @,(w) are given by 

where X(k) is the sensitivity function of the transducer. It was thought that, for 
the purpose of comparing a spectrum computed from a model such as (8. I )  with 
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the experimentally measured spectrum, it would be necessary to use a true 
sensitivity function X(k) for the particular transducer involved, rather than 
some idealized response such as (6.3). Gilchrist & Strawderman (1965) measured 
the spatial response K(s)  of two circular commercial lead zirconate transducers 
by applying a point load at  different radii, and determined the ‘effective’ radius 
of the transducers, that is the radius of an ideal transducer having uniform 
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FIGURE 17.  Wall pressure spectrum measured with various sized transducers. 0, orifice 
probe, 0.036 in. diameter; 0, crystal transducer, 0.125 in. diameter; A, x , Bruel &, 
Kjaer microphone, 0.25 in. and 0-5 in. diameter respectively; 0 ,  probe microphone, 
0.005 in. diameter (Hodgson, private communication). 

response inside the effective radius, equal to the average peak response near the 
centre of the real transducer, and zero response outside this radius. The radius 
was then chosen to make the overall sensitivity of the ideal transducer equal to 
that of the real transducer. Although this approximation may be expected to be 
reasonably accurate for sensitivity functions close to the ideal, there is no 
guarantee that it will give an accurate representation of S(k)  for other types of 
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sensitivity function. It was therefore decided to use values of S ( k )  obtained by 
numerically evaluating the Hankel transform of actual sensitivity functions Kfs). 
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FIGXJRE 18. Computed wave-number response of transducers. -, { 2 J , ( k a ) / k ~ } ~ ;  0, B & K 
4 1 3 1 ,  effective radius 7-2 mm; 0, LC 70, effective radius 2.36 mm; A, LD 107, 
cffcctivc radius 0.91 mm. 

In the absence of facilities fos making accurate measurements of K ( s )  for the 
different transducers used in this investigation, the measured sensitivity function 
of Gilchrist & Strawderman (1965) was used for the in. crystal transducer, by 
scaling the radii of the two transducers. Sensitivity functions for the Briiel and 
Kjaer $in. and in. microphones were obtained by scaling results obtained for a 
I in. microphone of similar geometry by Briiel & Rasmussen (1959). In this case 
the sensitivity function was measured by applying an oscillating localized 
electric field from a point electrode to the front face of the microphone diaphragm, 
at  various radii. The resulting deflexions of the microphone diaphragm yield K(s ) .  

The numerically evaluated Hankel transforms of these sensitivity functions 
were then compared with that for the idealized transducer, equation (6.3), and i t  
mas found that, a t  least up to the first zero of (6.3) at ka = 3.83, the wave-number 
response S ( k )  for the real transducers compared very closely with (6.3) provided 
that an effective radius somewhat smaller than the true radius was chosen. In 
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fact, for the two transducers tested by Gilchrist & Strawderman (Atlantic 
Research Corporation LC-70 and LD-107), the effective radius obtained by 
comparing the wave-number responses compared closely with that obtained by 
the authors’ method of comparing spatial sensitivity functions. Figure 18 
compares the computedwave-number responseswith the ideal response ( ~ J . ( X ) / X ) ~  
for effective radii 0.72, 0.73 and 0.69 of the actual radii for the B & K  4131, 
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FIGURE 19. Comparison of measured and computed spectra. -, experiment; - - - , com- 
putation; - - - - -, Corcos correction; x , + in. crystal transducer; 0, 4 in. B & K 
microphone; 0, + in. B & K microphone. 

LC-70 and LD- 107 transducers respectively. Because the spatial sensitivity of 
real transducers falls off more slowly than an ideal transducer, the real trans- 
ducers have a much smaller second peak in the wave-number response, so that the 
fit ofthedatatoequation(6.3)ispoor beyondthefistzeroof (6.3). However,it was 
established by numerical calculation that the response beyond the first zero gave 
a negligible contribution in the present computations for QP(o), so that equation 
(6.3) and an effective radius were used in the computations, rather than the true 
wave-number response for each transducer. While this procedure was considered 
to be sufficiently accurate in the present case, in general the true response should 
be used, particularly in cases where the contribution a t  high wave-numbers is 
significant. 
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The computed values of QP(w)/@(w) are compared with the measured values of 
Q?,(w)/@(w) in figure 19. 

The agreement in the case of the two condenser microphones is good, especially 
as the errors in the computed values are of opposite sign in the two cases. The 
agreement for the piezo-electric transducer is poor (in fact the results lie below 
those of the nominally large 4 in. condenser microphone) in spite of the fact that 
the frequency response of the transducer to sound pressure fluctuations was 
measured experimentally before the spectrum measurements. The diaphragm of 
this transducer consists of a piece of ‘Mylar’ sheet, 0.001 in. (0.025mm) thick, 
cemented to the transducer element and to the surrounding surface. It seems 
likely that the large effective radius of the transducer was due to incomplete 
adhesion of the outer part of this diaphragm. There is also some doubt that the 
sensitivity function used was a good approximation for the piezo-electric trans- 
ducer. 

For the more reliable condenser microphone, figure 19 also shows an attempt 
to compare the results with the empirical correction of Corcos (1963). This correc- 
tion assumes that the filtered spatial correlation, #,,(r, w )  is given by 

f lPP@, w )  = &J)A(wE/U,)B(wS/U,) e--id’uc, (8.3) 

where A and B are monotonically decreasing functions of their arguments, taken 
from the experimental results of Willmarth & Wooldridge (1962). Uc is a convec- 
tion velocity which varies with frequency. The estimated spectrum is then given 

where @(r) is the convolution integral of the spatial sensitivity function with 
itself, 

@(€) = K ( S ) K ( S + € ) d S .  (8.5) s 
The correction shown in figure 19 was computed from the tabulated values of the 
correction given in Corcos (1963). The agreement with the measured spectra is 
good for the + in. microphone, but rather poor for the gin. microphone. 

Inspection of the two forms for transducer correction (8.2) and (8.4) shows that 
they are closely related through a Fourier transform relationship, and that the 
main difference between them lies in the form assumed for X,,((,w). Corcos 
assumes that 

based on the measurements of Willmarth & Wooldridge (1962), whereas we have 
used gPp(k ,  w )  = S,,(k,U,/w, w)F(w/k lU , ) ,  which corresponds to 

h 

f$,(r, w )  = G(~c;/LI, ,  w)A‘ (4 /U , ) .  (8 .7)  

The use of equation (8.3) as a generally valid form for the wall pressure spectrum 
has been criticized more recently by Willmarth & Roos (1965), who also used 
measurements with different sized transducers to show that the correction could 
not be expressed as a function only of (URIU,), where R is the transducer radius, as 
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required by the similarity scaling of Corcos. In  general, their measured corrections 
were smaller than those predicted by Corcos (1963). No direct comparison can be 
made between the present results and those of Willmarth & ROOS, because the 
transducers used here were muchlarger than those of the latter authors. However, 
the two sets of results are consistent in showing a smaller correction than that of 
Corcos at the higher frequencies. At the highest frequencies, the Corcos type of 
scaling is expected to hold, because of the wall-similarity considerations dis- 
cussed by Bradshaw (1967). But, as already noted, the wave-number range in 
which this is expected to occur corresponds to transducer separations of about 
the minimum attainable in these experiments. The only prediction of wall- 
similarity scaling that can be checked is the form of the true frequency spectrum 
a t  high frequencies. The orifice probe is sufficiently small to resolve the small 
scale motion without error up to about 6 kHz, so it should be possible to detect 
part of the region of wall similarity, which is expected to be centred on a fre- 
quency of about 4 kHz. Dimensional arguments lead us to expect the wave- 
number spectrum in this region to fall like k ~ 1 ,  since k, is the only relevant length 
parameter, and by the same argument the frequency spectrum should fall like 
w1. The extent of the w-l variation is determined by the requirement that the 
eddies have scales comparable with the spatial limits of the wall-similarity region, 
giving a lower limit of oS*/U, = 0.6 and an upper limit of wu/U: = 0.5 (oS*lU, 
= 13 in this case). Thus at  the low-frequency end the spectrum will be dominated 
by large scale fluctuations from the outer layer, and at  the high-frequency end 
by the highly-damped sublayer fluctuations. This is clearly shown by Hodgson’s 
results (figure 17), but not by those taken with the 0.036in. (0.91mm) orifice 
probe, which was too large to resolve the sublayer contribution. Even so, there is 
an appreciable region for both transducers having a slope of about - 0-8. It is 
not clear why the slope is significantly less than the predicted - 1 ; earlier sug- 
gestions (Bradshaw 1967) that the frequency spectrum should have a lower slope 
than the wave-number spectrum because of the variation of local convection 
velocity across the layer are thought to be incorrect because U, appears in both 
the abscissa and the ordinate of the frequency spectrum and maintains the slope 
a t  - 1 .  

9. Conclusions 
Most of the extraneous contribution to the frequency spectrum at low fre- 

quencies in low-speed wind tunnel measurements of pressure fluctuations appears 
to arise in the wind-tunnel diffuser and to travel upstream as acoustic waves. For 
such experiments, a blower tunnel whose working section exhausts directly into a 
large volume is to be preferred. Where this is impracticable, the (k, c )  spectrum 
approach allows the acoustic contribution to be separated from the turbulence 
contribution. 

In  a zero-pressure-gradient boundary layer, the upstream-travelling energy, 
apart from any acoustic component, appears to be negligible in comparison with 
the downstream-travelling energy a t  any wave-number. 

The distribution of energy over the phase velocity band is roughly normal at all 



90 J .  A .  B. Wills 

wave-numbers, with a standard deviation of 0.14, centred on a peak energy 
velocity which varies from 0.9 U, at low wave-numbers. 

The filtered correlations with lateral separation a t  zero longitudinal separation 
do not appear to scale on any simple frequency parameter. 

A functional form for the pressure field has been proposed (equation (S.l)), 
based on the experimental results, which appears to predict the frequency 
spectrum measured with large transducers quite accurately. 

The measurements show the importance of allowing for the transducer spatial 
response in determining spectrum corrections a t  large wave-numbers where 
k a >  1. 

I am indebted to Mr P. Bradshaw for many helpful discussions, to Mr G. K. 
Knight who carried out the experimental work, and to Mr D. H. Ferriss who 
programmed the numerical calculations discussed in 9 8. The work described has 
been carried out as part of the Research Programme of the National Physical 
Laboratory. 
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